Title of article :
A tighter bounding interval for the 1-chromatic number of a surface Original Research Article
Author/Authors :
Vladimir P. Korzhik، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
26
From page :
95
To page :
120
Abstract :
Let χ1(S) be the maximum chromatic number for all graphs which can be drawn on a surface S so that each edge is crossed over by no more than one other edge. In the previous paper the author has proved that F(S) − 34 ⩽ χ1(S), where F(S)=⌊12(9 + √(81−32E(S)))⌋ is Ringelʹs upper bound for χ1(S) and E(S) is the Euler characteristic of S. In this paper it is shown that F(S) − 10 ⩽ χ1(S).
Journal title :
Discrete Mathematics
Serial Year :
1997
Journal title :
Discrete Mathematics
Record number :
951469
Link To Document :
بازگشت