Title of article :
The kth upper chromatic number of the line
Author/Authors :
Aaron Abrams، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
6
From page :
157
To page :
162
Abstract :
Let S ⊆ Rn, and let k ϵ N. Greenwell and Johnson [3] define <χ(k) (S) to be the smallest integer m (if such an integer exists) such that for every k × m array D = (dij) of positive real numbers, S can be colored with the colors C1, …, Cm such that no two points of S which are a (Euclidean) distance dij apart are both colored Cj, for all 1 ⩽i⩽k and 1⩽j⩽m. If no such integer exists then we say that <χ(k)(S) = ∞. In this paper we show that <χ(k) (R) is finite for all k.
Journal title :
Discrete Mathematics
Serial Year :
1997
Journal title :
Discrete Mathematics
Record number :
951474
Link To Document :
بازگشت