Title of article :
The Steiner ratio for the dual normed plane Original Research Article
Author/Authors :
Pengjun Wan، نويسنده , , Ding-Zhu Du، نويسنده , , Ronald L. Graham، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
15
From page :
261
To page :
275
Abstract :
A minimum Steiner tree for a given set X of points is a network interconnecting the points of X having minimal possible total length. The Steiner ratio for a metric space is the largest lower bound for the ratio of lengths between a minimum Steiner tree and a minimum spanning tree on the same set of points in the metric space. Du et al. (1993) conjectured that the Steiner ratio on a normed plane is equal to the Steiner ratio on its dual plane. In this paper we show that this conjecture is true for vbXvb ⩽ 5.
Journal title :
Discrete Mathematics
Serial Year :
1997
Journal title :
Discrete Mathematics
Record number :
951544
Link To Document :
بازگشت