Title of article :
Segmentation of multiple salient closed contours from real images
Author/Authors :
S.، Mahamud, نويسنده , , L.R.، Williams, نويسنده , , K.K.، Thornber, نويسنده , , Xu، Kanglin نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
Using a saliency measure based on the global property of contour closure, we have developed a segmentation method which identifies smooth closed contours bounding objects of unknown shape in real images. The saliency measure incorporates the Gestalt principles of proximity and good continuity that previous methods have also exploited. Unlike previous methods, we incorporate contour closure by finding the eigenvector with the largest positive real eigenvalue of a transition matrix for a Markov process where edges from the image serve as states. Element (i, j) of the transition matrix is the conditional probability that a contour which contains edge j will also contain edge i. We show how the saliency measure, defined for individual edges, can be used to derive a saliency relation, defined for pairs of edges, and further show that strongly-connected components of the graph representing the saliency relation correspond to smooth closed contours in the image. Finally, we report for the first time, results on large real images for which segmentation takes an average of about 10 seconds per object on a general-purpose workstation.
Journal title :
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Journal title :
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE