Title of article :
Optimal cluster preserving embedding of nonmetric proximity data
Author/Authors :
V.، Roth, نويسنده , , J.M.، Buhmann, نويسنده , , J.، Laub, نويسنده , , M.، Kawanabe, نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-153
From page :
154
To page :
0
Abstract :
For several major applications of data analysis, objects are often not represented as feature vectors in a vector space, but rather by a matrix gathering pairwise proximities. Such pairwise data often violates metricity and, therefore, cannot be naturally embedded in a vector space. Concerning the problem of unsupervised structure detection or clustering, in this paper, a new embedding method for pairwise data into Euclidean vector spaces is introduced. We show that all clustering methods, which are invariant under additive shifts of the pairwise proximities, can be reformulated as grouping problems in Euclidian spaces. The most prominent property of this constant shift embedding framework is the complete preservation of the cluster structure in the embedding space. Restating pairwise clustering problems in vector spaces has several important consequences, such as the statistical description of the clusters by way of cluster prototypes, the generic extension of the grouping procedure to a discriminative prediction rule, and the applicability of standard preprocessing methods like denoising or dimensionality reduction.
Keywords :
Abdominal obesity , Food patterns , Prospective study , waist circumference
Journal title :
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Serial Year :
2003
Journal title :
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Record number :
95182
Link To Document :
بازگشت