Author/Authors :
In this paper we are concerned with finding an upper bound on Nq(n)، نويسنده , , the maximum number of Latin squares of order n in a mutually quasi-orthogonal set. In doing so، نويسنده , , we make use of relationships with orthogonal frequency squares، نويسنده , , equidistant permutation arrays and Room squares. We improve upon the best-known bound for Nq(n)، نويسنده , , n?8، نويسنده , , by showing that Nq(n)?R(n)، نويسنده , , where R(n) is the maximum number of rows in an equidistant permutation array with n columns and index 1. Much improved bounds are found for special cases.، نويسنده ,
Keywords :
Latin square , Quasi-orthogonal , Equidistant permutation array , Room square , Orthogonal frequency square