Title of article :
Identification and estimation of continuous-time, data-based
mechanistic (DBM) models for environmental systems
Author/Authors :
P.C. Young a، نويسنده , , b، نويسنده , , *، نويسنده , , H. Garnier c، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2006
Abstract :
Initially, the paper provides an introduction to the main aspects of existing time-domain methods for identifying linear
continuous-time models from discrete-time data and shows how one of these methods has been applied to the identification and
estimation of a model for the transportation and dispersion of a pollutant in a river. It then introduces a widely applicable class of
new, nonlinear, State Dependent Parameter (SDP) models. Finally, the paper describes how this SDP approach has been used to
identify, estimate and control a nonlinear differential equation model of global carbon cycle dynamics and global warming.
Keywords :
Continuous-time , Linear , environmental , Optimal estimation , Nonlinear , stochastic , Instrumental variable , State dependent parameter
Journal title :
Environmental Modelling and Software
Journal title :
Environmental Modelling and Software