Title of article :
A GIS framework for surface-layer soil moisture estimation
combining satellite radar measurements and land surface
modeling with soil physical property estimation
Author/Authors :
M. Tischler، نويسنده , , M. Garcia b، نويسنده , , C. Peters-Lidard c، نويسنده , , M.S. Moran d، نويسنده , , *، نويسنده , ,
S. Miller e، نويسنده , , D. Thoma d، نويسنده , , S. Kumar b، نويسنده , , J. Geiger، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2007
Abstract :
A GIS framework, the Army Remote Moisture System (ARMS), has been developed to link the Land Information System (LIS), a high performance
land surface modeling and data assimilation system, with remotely sensed measurements of soil moisture to provide a high resolution
estimation of soil moisture in the near surface. ARMS uses available soil (soil texture, porosity, Ksat), land cover (vegetation type, LAI, Fraction
of Greenness), and atmospheric data (Albedo) in standardized vector and raster GIS data formats at multiple scales, in addition to climatological
forcing data and precipitation. PEST (Parameter EStimation Tool) was integrated into the process to optimize soil porosity and saturated
hydraulic conductivity (Ksat), using the remotely sensed measurements, in order to provide a more accurate estimate of the soil moisture.
The modeling process is controlled by the user through a graphical interface developed as part of the ArcMap component of ESRI ArcGIS.
Keywords :
GIS , Arms , parameter estimation , soil moisture , Land information system , model integration
Journal title :
Environmental Modelling and Software
Journal title :
Environmental Modelling and Software