Title of article :
Weather modelling using a multivariate latent Gaussian model
Author/Authors :
M. Durban، نويسنده , , C.A. Glasbey، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
We propose a vector auto-regressive moving average process as a model for daily weather data. For the rainfall variable a monotonic transformation is applied to achieve marginal normality, thus, defining a latent variable, with zero rainfall data corresponding to censored values below a threshold. Methodology is presented for model identification, estimation and validation, illustrated using data from Mylnefield, Scotland. The new model, a vector second-order auto-regressive first-order moving average (VARMA(2,1)) process, fits the data better, and produces more realistic simulated series than, existing models of Richardson [Water Resources Res. 17 (1981) 182] and Peiris and McNicol [Agric. Forest Meteorol. 79 (1996) 219].
Keywords :
Likelihood , Rainfall , Vector auto-regressive moving average process , Auto-correlation , simulation
Journal title :
Agricultural and Forest Meteorology
Journal title :
Agricultural and Forest Meteorology