• Title of article

    Weather modelling using a multivariate latent Gaussian model

  • Author/Authors

    M. Durban، نويسنده , , C.A. Glasbey، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2001
  • Pages
    15
  • From page
    187
  • To page
    201
  • Abstract
    We propose a vector auto-regressive moving average process as a model for daily weather data. For the rainfall variable a monotonic transformation is applied to achieve marginal normality, thus, defining a latent variable, with zero rainfall data corresponding to censored values below a threshold. Methodology is presented for model identification, estimation and validation, illustrated using data from Mylnefield, Scotland. The new model, a vector second-order auto-regressive first-order moving average (VARMA(2,1)) process, fits the data better, and produces more realistic simulated series than, existing models of Richardson [Water Resources Res. 17 (1981) 182] and Peiris and McNicol [Agric. Forest Meteorol. 79 (1996) 219].
  • Keywords
    Likelihood , Rainfall , Vector auto-regressive moving average process , Auto-correlation , simulation
  • Journal title
    Agricultural and Forest Meteorology
  • Serial Year
    2001
  • Journal title
    Agricultural and Forest Meteorology
  • Record number

    959097