Title of article :
A physical short-channel threshold voltage model for undoped symmetric double-gate MOSFETs
Author/Authors :
Chen، Guo-Qiang نويسنده , , J.D.، Meindl, نويسنده , , II، Harrell, E.M., نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-1630
From page :
1631
To page :
0
Abstract :
A compact, physical, short-channel threshold voltage model for undoped symmetric double-gate MOSFETs has been derived based on an analytical solution of the two-dimensional (2-D) Poisson equation with the mobile charge term included. The new model is verified by published numerical simulations with close agreement. Applying the newly developed model, threshold voltage sensitivities to channel length, channel thickness, and gate oxide thickness have been comprehensively investigated. For practical device designs the channel length causes 30-50% more threshold voltage variation than does the channel thickness for the same process tolerance, while the gate oxide thickness causes the least, relatively insignificant threshold voltage variation. Model predictions indicate that individual DG MOSFETs with good turn-off behavior are feasible at 10 nm scale; however, practical exploitation of these devices toward gigascale integrated systems requires development of novel technologies for significant improvement in process control.
Keywords :
gravitational waves , black hole physics
Journal title :
IEEE TRANSACTIONS ON ELECTRON DEVICES
Serial Year :
2003
Journal title :
IEEE TRANSACTIONS ON ELECTRON DEVICES
Record number :
95948
Link To Document :
بازگشت