Title of article
Structure of dicarboxyl malto-oligomers isolated from hypochlorite-oxidised potato starch studied by 1H and 13C NMR spectroscopy
Author/Authors
Anita Teleman، نويسنده , , Kristiina Kruus، نويسنده , , Erja ?mm?lahti، نويسنده , , Johanna Buchert، نويسنده , , Kari Nurmi، نويسنده ,
Issue Information
دوهفته نامه با شماره پیاپی سال 1999
Pages
7
From page
286
To page
292
Abstract
The main oxidised component in hypochlorite-oxidised potato starch was isolated by anion-exchange chromatography after enzymatic hydrolysis. The primary structure of the isolated oligosaccharides was determined by 1H and 13C NMR spectroscopy, using homonuclear and heteronuclear two-dimensional techniques. The isolated pentamer and hexamer contained one glucose unit oxidised to a dicarboxyl residue. As the hypochlorite oxidation has occurred at positions C-2 and C-3 of a glucose unit, the introduced carboxyl groups caused ring cleavage between the carbons C-2 and C-3. The ring-cleaved dicarboxyl residue had glycosidic linkages on both sides, implying that this oxidation pathway does not result in depolymerisation. The vicinal coupling constant between H-4 and H-5 in the ring-cleaved dicarboxyl residue was 3.2 Hz, showing that the gauche orientations are preferred. As a result, a different bending of the starch chain is observed and is probably, therefore, one of the reasons why hypochlorite oxidation reduces the tendency to retrogradation. The pKa values (3.0) were determined from the pH-dependent chemical shifts of H-1, H-4 and H-5 of the dicarboxylic residue.
Keywords
Alpha amylase , Glucoamylase , HPAED-PAD , Structure , Ring-cleavage , Oxidised starch
Journal title
Carbohydrate Research
Serial Year
1999
Journal title
Carbohydrate Research
Record number
962284
Link To Document