Title of article :
CO2/heat fluxes in rice fields: Comparative assessment of flooded and non-flooded fields in the Philippines
Author/Authors :
Ma. Carmelita R. Alberto، نويسنده , , Reiner Wassmann، نويسنده , , By TAKASHI HIRANO، نويسنده , , AKIRA MIYATA، نويسنده , , Arvind Kumar، نويسنده , , Agnes Padre، نويسنده , , Modesto Amante، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
14
From page :
1737
To page :
1750
Abstract :
The seasonal fluxes of heat, moisture and CO2 were investigated under two different rice environments: flooded and aerobic soil conditions, using the eddy covariance technique during 2008 dry season. The fluxes were correlated with the microclimate prevalent in each location. This study was intended to monitor the environmental impact, in terms of C budget and heat exchange, of shifting from lowland rice production to aerobic rice cultivation as an alternative to maintain crop productivity under water scarcity. The aerobic rice fields had higher sensible heat flux (H) and lower latent heat flux (LE) compared to flooded fields. On seasonal average, aerobic rice fields had 48% more sensible heat flux while flooded rice fields had 20% more latent heat flux. Consequently, the aerobic rice fields had significantly higher Bowen ratio (0.25) than flooded fields (0.14), indicating that a larger proportion of the available net radiation was used for sensible heat transfer or for warming the surrounding air. The total C budget integrated over the cropping period showed that the net ecosystem exchange (NEE) in flooded rice fields was about three times higher than in aerobic fields while gross primary production (GPP) and ecosystem respiration (Re) were 1.5 and 1.2 times higher, respectively. The high GPP of flooded rice ecosystem was evident because the photosynthetic capacity of lowland rice is naturally large. The Re of flooded rice fields was also relatively high because it was enhanced by the high photosynthetic activities of lowland rice as manifested by larger above-ground plant biomass. The NEE, GPP, and Re values for flooded rice fields were −258, 778, and 521 g C m−2, respectively. For aerobic rice fields, values were −85, 515, and 430 g C m−2 for NEE, GPP, and Re, respectively. The ratio of Re/GPP in flooded fields was 0.67 while it was 0.83 for aerobic rice fields. This short-term data showed significant differences in C budget and heat exchange between flooded and aerobic rice ecosystems. Further investigation is needed to clarify seasonal and inter-annual variations in microclimate, carbon and water budget of different rice production systems.
Keywords :
Microclimate , Flooded rice fields , Heat fluxes , Aerobic rice fields , Net ecosystem CO2 exchange (NEE)
Journal title :
Agricultural and Forest Meteorology
Serial Year :
2009
Journal title :
Agricultural and Forest Meteorology
Record number :
964871
Link To Document :
بازگشت