Title of article :
Cold-set thickening mechanism of β-lactoglobulin at low pH: Concentration effects
Author/Authors :
P. Mudgal، نويسنده , , C.R. Daubert، نويسنده , , E.A. Foegeding، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2009
Abstract :
There is an interest in developing protein based thickening agents for nutritional considerations. A procedure to convert whey protein concentrates or isolates into a pH modified cold-thickening ingredient was developed. Concentration effects on thickening mechanism of this whey protein ingredient were studied with a β-lactoglobulin model system at the pH of the modification procedure, 3.35. In this study, concentration effects on thermal aggregation of β-lactoglobulin were studied at low pH using capillary and rotational viscometry, transmission electron microscopy (TEM), and high performance liquid chromatography coupled with multi-angle laser light scattering (HPLC-MALS). From the results of capillary viscometry, a critical concentration (Cc ∼ 6.9% w/w) was identified below which no significant thickening functionality could be achieved. Microscopy revealed formation of flexible fibrillar network at pH 3.35 during heating at all concentrations. These flexible fibrils had a diameter of about 5 nm and persistence length of about 35 nm as compared to more linear and stiff fibrils formed at pH 2 and low ionic strength conditions. Under similar heating conditions at concentration above Cc, larger aggregates similar to microgels were observed compared to the concentration below Cc, where isolated fibrils with an average contour length of about 130 nm were observed. These microgels and apparently stronger interactions between aggregates at concentrations above Cc were seemingly responsible for thickening functionality of heated β-lactoglobulin solutions and subsequently modified powders. Further investigation of β-lactoglobulin aggregation at this pH may provide capability to mechanistically tailor the functional attributes of modified ingredients.
Keywords :
Critical concentration , ?-Lactoglobulin , Microgels , Whey protein , Functionality
Journal title :
Food Hydrocolloids
Journal title :
Food Hydrocolloids