Abstract :
The processes that affect removal and retention of nitrogen during wastewater treatment in constructed wetlands (CWs) are
manifold and include NH3 volatilization, nitrification, denitrification, nitrogen fixation, plant and microbial uptake, mineralization
(ammonification), nitrate reduction to ammonium (nitrate-ammonification), anaerobic ammonia oxidation (ANAMMOX),
fragmentation, sorption, desorption, burial, and leaching. However, only few processes ultimately remove total nitrogen from the
wastewater while most processes just convert nitrogen to its various forms. Removal of total nitrogen in studied types of constructed
wetlands varied between 40 and 55% with removed load ranging between 250 and 630 g N m−2 yr−1 depending on CWs type and
inflow loading. However, the processes responsible for the removal differ in magnitude among systems. Single-stage constructed
wetlands cannot achieve high removal of total nitrogen due to their inability to provide both aerobic and anaerobic conditions at the
same time. Vertical flow constructed wetlands remove successfully ammonia-N but very limited denitrification takes place in these
systems. On the other hand, horizontal-flow constructed wetlands provide good conditions for denitrification but the ability of these
system to nitrify ammonia is very limited. Therefore, various types of constructed wetlands may be combined with each other in order
to exploit the specific advantages of the individual systems. The soil phosphorus cycle is fundamentally different from the N cycle.
There are no valency changes during biotic assimilation of inorganic P or during decomposition of organic P by microorganisms.
Phosphorus transformations during wastewater treatment in CWs include adsorption, desorption, precipitation, dissolution, plant and
microbial uptake, fragmentation, leaching, mineralization, sedimentation (peat accretion) and burial. The major phosphorus removal
processes are sorption, precipitation, plant uptake (with subsequent harvest) and peat/soil accretion. However, the first three processes
are saturable and soil accretion occurs only in FWS CWs. Removal of phosphorus in all types of constructed wetlands is low unless
special substrates with high sorption capacity are used. Removal of total phosphorus varied between 40 and 60% in all types of
constructed wetlands with removed load ranging between 45 and 75 g N m−2 yr−1 depending on CWs type and inflow loading.
Removal of both nitrogen and phosphorus via harvesting of aboveground biomass of emergent vegetation is low but it could be
substantial for lightly loaded systems (cca 100–200 g N m−2 yr−1 and 10–20 g P m−2 yr−1). Systems with free-floating plants may
achieve higher removal of nitrogen via harvesting due to multiple harvesting schedule.
Keywords :
Constructed wetlands , nitrogen , Phosphorus , standing stock , Wastewater