Title of article :
Numerical solution of fuzzy differential equations under generalized differentiability by fuzzy neural network
Author/Authors :
Mosleh-Shirazi، M. A. نويسنده Assistant Professor of Medical Physics, Radiotherapy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran ,
Issue Information :
فصلنامه با شماره پیاپی 0 سال 2013
Pages :
17
From page :
281
To page :
297
Abstract :
در اين مقاله، ما يك معادله ديفرانسيل فازي بوسيله مفهوم مشتقات تعميم يافته را تفسير مي كنيم. قضيه مشخصه تعميم يافته را مورد استفاده قرار مي دهيم. سپس يك روش هايبريد جديد بر پايه الگوريتم يادگيري از شبكه عصبي فازي يراي حل معادلات ديفرانسيل با مقدار اوليه فازي ارايه مي شود. در اينجا شبكه عصبي به عنوان يك محاسبه گر شبكه اي اصلي در نظر گرفته مي شود. اين مدل جواب تقريبي معادلات ديفرانسيل فازي را در يك دامنه شامل نقطه اوليه فازي با يك همسايگي به شعاع كوچك بدست مي آورد. يك الگوريتم يادگيري براي اصلاح وزنها توسط تابع هزينه ارايه مي گردد.
Abstract :
In this paper, We interpret a fuzzy differential equation by using the strongly generalized differentiability concept. Utilizing the Generalized characterization Theorem. Then a novel hybrid method based on learning algorithm of fuzzy neural network for the solution of differential equation with fuzzy initial value is presented. Here neural network is considered as a part of large field called neural computing or soft computing. The model finds the approximated solution of fuzzy differential equation inside of its domain for the close enough neighborhood of the fuzzy initial point. We propose a learning algorithm from the cost function for adjusting of fuzzy weights.
Journal title :
International Journal of Industrial Mathematics(IJIM)
Serial Year :
2013
Journal title :
International Journal of Industrial Mathematics(IJIM)
Record number :
984036
Link To Document :
بازگشت