Author/Authors :
R.W. Macdonalda، نويسنده , , T، نويسنده , , T. Harnerb، نويسنده , , J. Fyfec، نويسنده ,
Abstract :
The Arctic has undergone dramatic change during the past decade. The observed changes include atmospheric sea-level
pressure, wind fields, sea-ice drift, ice cover, length of melt season, change in precipitation patterns, change in hydrology and
change in ocean currents and watermass distribution. It is likely that these primary changes have altered the carbon cycle and
biological systems, but the difficulty of observing these together with sporadic, incomplete time series makes it difficult to evaluate
what the changes have been. Because contaminants enter global systems and transport through air and water, the changes listed
above will clearly alter contaminant pathways. Here, we review what is known about recent changes using the Arctic Oscillation as
a proxy to help us understand the forms under which global change will be manifest in the Arctic. For Pb, Cd and Zn, the Arctic is
likely to become a more effective trap because precipitation is likely to increase. In the case of Cd, the natural cycle in the ocean
appears to have a much greater potential to alter exposure than do human releases of this metal. Mercury has an especially complex
cycle in the Arctic including a unique scavenging process (mercury depletion events), biomagnifying foodwebs, and chemical
transformations such as methylation. The observation that mercury seems to be increasing in a number of aquatic species whereas
atmospheric gaseous mercury shows little sign of change suggests that factors related to change in the physical system (ice cover,
permafrost degradation, organic carbon cycling) may be more important than human activities.
Organochlorine contaminants offer a surprising array of possibilities for changed pathways. To change in precipitation
patterns can be added change in ice cover (air–water exchange), change in food webs either from the top down or from the
bottom up (biomagnification), change in the organic carbon cycle and change in diets. Perhaps the most interesting possibility,
presently difficult to predict, is combination of immune suppression together with expanding ranges of disease vectors. Finallybiotransport through migratory species is exceptionally vulnerable to changes in migration strength or in migration pathway—in
the Arctic, change in the distribution of ice and temperature may already have caused such changes.
Hydrocarbons, which tend to impact surfaces, will be mostly affected by change in the ice climate (distribution and drift
tracks). Perhaps the most dramatic changes will occur because our view of the Arctic Ocean will change as it becomes more
amenable to transport, tourism and mineral exploration on the shelves. Radionuclides have tended not to produce a radiological
problem in the Arctic; nevertheless one pathway, the ice, remains a risk because it can accrue, concentrate and transport radiocontaminated
sediments. This pathway is sensitive to where ice is produced, what the transport pathways of ice are, and where
ice is finally melted—all strong candidates for change during the coming century.
The changes that have already occurred in the Arctic and those that are projected to occur have an effect on contaminant time
series including direct measurements (air, water, biota) or proxies (sediment cores, ice cores, archive material). Although these
dsystemT changes can alter the flux and concentrations at given sites in a number of obvious ways, they have been all but
ignored in the interpretation of such time series. To understand properly what trends mean, especially in complex drecordersT
such as seals, walrus and polar bears, demands a more thorough approach to time series by collecting data in a number of media
coherently. Presently, a major reservoir for contaminants and the one most directly connected to biological uptake in species at
greatest risk–the ocean–practically lacks such time series.,
Keywords :
Arctic , contaminants , mercury , Climate change , Metals , radionuclides , PAH , Organochlorines