• Title of article

    Quantitative effects of composting state variables on C/N ratio through GA-aided multivariate analysis Original Research Article

  • Author/Authors

    Wei Sun، نويسنده , , Guo H. Huang، نويسنده , , GuangMing Zeng، نويسنده , , Xiaosheng Qin، نويسنده , , Hui Yu، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2011
  • Pages
    12
  • From page
    1243
  • To page
    1254
  • Abstract
    It is widely known that variation of the C/N ratio is dependent on many state variables during composting processes. This study attempted to develop a genetic algorithm aided stepwise cluster analysis (GASCA) method to describe the nonlinear relationships between the selected state variables and the C/N ratio in food waste composting. The experimental data from six bench-scale composting reactors were used to demonstrate the applicability of GASCA. Within the GASCA framework, GA searched optimal sets of both specified state variables and SCAʹs internal parameters; SCA established statistical nonlinear relationships between state variables and the C/N ratio; to avoid unnecessary and time-consuming calculation, a proxy table was introduced to save around 70% computational efforts. The obtained GASCA cluster trees had smaller sizes and higher prediction accuracy than the conventional SCA trees. Based on the optimal GASCA tree, the effects of the GA-selected state variables on the C/N ratio were ranged in a descending order as: NH4+-N concentration > Moisture content > Ash Content > Mean Temperature > Mesophilic bacteria biomass. Such a rank implied that the variation of ammonium nitrogen concentration, the associated temperature and the moisture conditions, the total loss of both organic matters and available mineral constituents, and the mesophilic bacteria activity, were critical factors affecting the C/N ratio during the investigated food waste composting. This first application of GASCA to composting modelling indicated that more direct search algorithms could be coupled with SCA or other multivariate analysis methods to analyze complicated relationships during composting and many other environmental processes.
  • Keywords
    Genetic Algorithm , The C/N ratio , Food waste composting , Stepwise cluster analysis , variable selection
  • Journal title
    Science of the Total Environment
  • Serial Year
    2011
  • Journal title
    Science of the Total Environment
  • Record number

    987309