• Title of article

    Bioaccumulation of As, Cd, Cr, Hg(II), and MeHg in killifish (Fundulus heteroclitus) from amphipod and worm prey Original Research Article

  • Author/Authors

    Jessica Dutton، نويسنده , , Nicholas S. Fisher، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2011
  • Pages
    10
  • From page
    3438
  • To page
    3447
  • Abstract
    Elevated metal levels in fish are a concern for the fish themselves, their predators, and possibly humans who consume contaminated seafood. Metal bioaccumulation models often rely on assimilation efficiencies (AEs) of ingested metals and loss rate constants after dietary exposure (kefs). These models can be used to better understand processes regulating metal accumulation and can be used to make site-specific predictions of metal concentrations in animal tissues. Fish often consume a varied diet, and prey choice can influence these two parameters. We investigated the trophic transfer of As, Cd, Cr, Hg(II), and methylmercury (MeHg) from a benthic amphipod (Leptocheirus plumulosus) and an oligochaete (Lumbriculus variegatus) to killifish (Fundulus heteroclitus) using gamma-emitting radioisotopes. Except for MeHg, AEs varied between prey type. AEs were highest for MeHg (92%) and lowest for Cd (2.9–4.5%) and Cr (0.2–4%). Hg(II) showed the largest AE difference between prey type (14% amphipods, 24% worms). For Cd and Hg(II) kefs were higher after consuming amphipods than consuming worms. Tissue distribution data shows that Cd and Hg(II) were mainly associated with the intestine, whereas As and MeHg were transported throughout the body. Calculated trophic transfer factors (TTFs) suggest that MeHg is likely to biomagnify at this trophic step at all ingestion rates, whereas As, Cd, Cr, and Hg(II) will not. Data collected in this study and others indicate that using one prey item to calculate AE and kef could lead to an over- or underestimation of these parameters.
  • Journal title
    Science of the Total Environment
  • Serial Year
    2011
  • Journal title
    Science of the Total Environment
  • Record number

    987568