Title of article :
Phototransformation of the sunlight filter benzophenone-3 (2-hydroxy-4-methoxybenzophenone) under conditions relevant to surface waters Original Research Article
Author/Authors :
Davide Vione، نويسنده , , Rosalinda Caringella، نويسنده , , Elisa De Laurentiis، نويسنده , , Marco Pazzi، نويسنده , , Claudio Minero، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
9
From page :
243
To page :
251
Abstract :
The UV filter benzophenone-3 (BP3) has UV photolysis quantum yield ΦBP3 = (3.1 ± 0.3) · 10− 5 and the following second-order reaction rate constants: with •OH, image = (2.0 ± 0.4) · 1010 M− 1 s− 1; with the triplet states of chromophoric dissolved organic matter (3CDOM*), image = (1.1 ± 0.1) · 109 M− 1 s− 1; with 1O2, image = (2.0 ± 0.1) · 105 M− 1 s− 1, and with CO3−•, image < 5 · 107 M− 1 s− 1. These data allow the modelling of BP3 photochemical transformation, which helps filling the knowledge gap about the environmental persistence of this compound. Under typical surface-water conditions, direct photolysis and reactions with •OH and 3CDOM* would be the main processes of BP3 phototransformation. Reaction with •OH would prevail at low DOC, direct photolysis at intermediate DOC (around 5 mg C L− 1), and reaction with 3CDOM* at high DOC. If the reaction rate constant with CO3−• is near the upper limit of experimental measures (5 · 107 M− 1 s− 1), the CO3−• degradation process could be somewhat important for DOC < 1 mg C L− 1. The predicted half-life time of BP3 in surface waters under summertime conditions would be of some weeks, and it would increase with increasing depth and DOC. BP3 transformation intermediates were detected upon reaction with •OH. Two methylated derivatives were tentatively identified, and they were probably produced by reaction between BP3 and fragments arising from photodegradation. The other intermediates were benzoic acid (maximum concentration ~ 10% of initial BP3) and benzaldehyde (1%).
Keywords :
Environmental modelling , Photosensitisers , Pharmaceuticals and personal care products , Surface-water photochemistry , Indirect photolysis
Journal title :
Science of the Total Environment
Serial Year :
2013
Journal title :
Science of the Total Environment
Record number :
989360
Link To Document :
بازگشت