Author/Authors :
Seneviratne، Gamini نويسنده , , Jayasinghearachchi، H. S. نويسنده ,
Abstract :
Phenolic acids, low molecular weight phenolics, are precursors of a variety of antimicrobial compounds, root signalling molecules, and phytoalexins that play an important role in plant defence responses. In agro ecosystem, a large amount of litter is turned over during the cropping season, fallow period and land preparation. This releases a flush of phenolic acids, amounts of which exceed very much the quantities released in root exudation. In rhizobial inoculation of legumes, these phenolic acids, depending on the concentration, may affect the persistence of rhizobia in the soil and their symbiotic efficiency, in terms of N2 fixation. The present study evaluates the effects of different concentrations of four phenolic acids (protocatechuic, p-coumaric, ferulic and vanillic) on population size of four rhizobial strains (Bradyrhizobium elkanii SEMIA 5019, B. japonicum TAL 102 and TAL 620, and Azorhizobium caulinodans ORS 571). Culture media with different concentrations of phenolic acids in the presence or absence of manitol were used to evaluate rhizobial population size on day 6. Rhizobial total proteins were extracted and electrophoresed on polyacrylamide gels. Further, the effects of phenolic acid-affected rhizobia on N2 fixing capacity were also investigated by inoculating two of those strains to soybean. Phenolic acid-treated B. elkanii SEMIA 5019 and B. japonicum TAL 102 were inoculated to soybean, and plant growth, N accumulation and nodule dry weight were assessed in a pot experiment. The population size of TAL 102 was induced when the culture medium was supplied with different phenolic acids as the sole carbon source. In many cases, the presence of manitol in the medium masked the differential effects of phenolic acids on the rhizobial population size. All four phenolic acids used in our study suppressed the population size of TAL 620. Strain ORS 571 showed low population size at low concentrations followed by a growth recovery at high phenolic acid concentrations. Strain SEMIA 5019 treated with 0.03 mM ferulic acid produced the highest increase in shoot growth of soybean, (ca. 65%). Treating strain SEMIA 5019 with 9 mM protocatechuic acid produced the largest decrease in nodule dry weight (ca. 50%) without any significant changes in shoot N accumulation. P-coumaric acid, even at 0.12 mM, could stimulate the N2 fixing activity of SEMIA 5019, whereas the same concentration reduced the effectiveness of TAL102 in a soybean-rhizobium symbiosis. Phenolic acid interactions with rhizobia led to biochemical, and hence physiological changes, resulting in an alteration in their symbiotic ability. Different leguminous plants secrete different phenolic compounds other than phenolic acids during root exudation. Further studies should therefore be conducted to evaluate the effects of those compounds on the symbiosis. It is concluded from this study that the effect of phenolic acids is concentration and structure dependant, and strain-specific. The effect will also be pH dependant. Thus, phenolic acids are possible agents for modifying the legume-rhizobial symbiosis.
Keywords :
Phenolic acids , Soybean , rhizobial growth , legume , rhizobial symbiosis