Title of article :
ON THE DIMENSIONLESSNESS OF INVARIANT SETS
Author/Authors :
OLSEN، L. نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-538
From page :
539
To page :
0
Abstract :
Let M be a subset of R with the following two invariance properties: (1) M+k(subset) M for all integers k, and (2) there exists a positive integer l => 2 such that 1/l M(subset) M. (For example, the set of Liouville numbers and the Besicovitch-Eggleston set of non-normal numbers satisfy these conditions.) We prove that if h is a dimension function that is strongly concave at 0, then the h-dimensional Hausdorff measure H^h(M) of M equals 0 or infinity.
Keywords :
Charge density , nickel , amino acids , Chiral , asymmetric synthesis
Journal title :
GLASGOW MATHEMATICAL JOURNAL
Serial Year :
2003
Journal title :
GLASGOW MATHEMATICAL JOURNAL
Record number :
99268
Link To Document :
بازگشت