Title of article :
A GENERALIZATION OF LEVINGERS THEOREM TO POSITIVE KERNEL OPERATORS
Author/Authors :
DRNOVSEK، ROMAN نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-544
From page :
545
To page :
0
Abstract :
We prove some inequalities for the spectral radius of positive operators on Banach function spaces. In particular, we prove the following extension of Levingerʹs theorem. Let K be a positive compact kernel operator on L^2(X,(mu)) with the spectral radius r(K). Then the function (phi) defined by (phi)(t) = r(t K + (1-t) K^*) is non-decreasing on [0,1/2]. We also prove that ||A + B^*|| =>2 . sqrt(r(A B)) for any positive operators A and B on L^2(X, (mu)).
Keywords :
Charge density , asymmetric synthesis , amino acids , Chiral , nickel
Journal title :
GLASGOW MATHEMATICAL JOURNAL
Serial Year :
2003
Journal title :
GLASGOW MATHEMATICAL JOURNAL
Record number :
99269
Link To Document :
بازگشت