Title of article :
Stereotypical gender actions can be extracted from web text
Author/Authors :
Amaç Herda?delen†، نويسنده , , Marco Baroni، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2011
Pages :
9
From page :
1741
To page :
1749
Abstract :
We extracted gender-specific actions from text corpora and Twitter, and compared them with stereotypical expectations of people. We used Open Mind Common Sense (OMCS), a common sense knowledge repository, to focus on actions that are pertinent to common sense and daily life of humans. We use the gender information of Twitter users and web-corpus-based pronoun/name gender heuristics to compute the gender bias of the actions. With high recall, we obtained a Spearman correlation of 0.47 between corpus-based predictions and a human gold standard, and an area under the ROC curve of 0.76 when predicting the polarity of the gold standard. We conclude that it is feasible to use natural text (and a Twitter-derived corpus in particular) in order to augment common sense repositories with the stereotypical gender expectations of actions. We also present a dataset of 441 common sense actions with human judgesʹ ratings on whether the action is typically/slightly masculine/feminine (or neutral), and another larger dataset of 21,442 actions automatically rated by the methods we investigate in this study.
Journal title :
Journal of the American Society for Information Science and Technology
Serial Year :
2011
Journal title :
Journal of the American Society for Information Science and Technology
Record number :
994503
Link To Document :
بازگشت