شماره ركورد :
17618
عنوان به زبان ديگر :
On The Mean Convergence of Biharmonic Functions.
پديد آورندگان :
Abkar Ali A. نويسنده
از صفحه :
337
تا صفحه :
342
تعداد صفحه :
6
چكيده لاتين :
Let T denote the unit circle in the complex plane. Given a function f (element of)Lp (T), one uses t usual (harmonic) Poisson kernel P ((zeta),z) for the unit disk to define the Poisson integral of f, namely h=P[f]. Here we consider the biharmonic Poisson kernel F((zeta),z) for the unit disk to define the notion of F-integral of a given function f(element) Lp (T); this associated biharmonic function will be denoted by u=F=[f]. We then consider the dilations ur(z)=u(rz) for z(element of) T and 0 =< r <1. The main result of this paper indicates that the dilations ur are convergent to f in the mean, or in the norm of Lp(T).
شماره مدرك :
1201540
لينک به اين مدرک :
بازگشت