شماره ركورد :
20778
عنوان به زبان ديگر :
An Improved Algorithm on Least Squares Support Vector Machines
پديد آورندگان :
Liejun Wang نويسنده , Huicheng Lai نويسنده , Taiyi Zhang نويسنده
از صفحه :
370
تا صفحه :
373
تعداد صفحه :
4
چكيده لاتين :
The Least Squares Support Vector Machines (LS-SYM) is an improvement on the Support Vector Machines (SVM). Combined the LS-SYM with the Multi-Resolution Analysis (MRA), an improved algorithmthe Multi-resolution Least Squares Support Vector Machines (MLS-SYM) algorithm is proposed in this study. With better approximation ability, the proposed algorithm has the same theoretical framework as the MRA. At a fixed scale the MLS-SVM is a classical LS-SVM. However, the MLS-SVM can gradually approximate the target function at different scales. In experiment, the MLS-SYM is used as nonlinear systemיs identification, with better identification accuracy achieved.
شماره مدرك :
1204815
لينک به اين مدرک :
بازگشت