شماره ركورد كنفرانس :
453
عنوان مقاله :
A Globally Convergent Trust-Region Algorithm for Unconstrained Optimization Using Filter
پديدآورندگان :
Fatemi Masoud نويسنده , Mahdavi-Amiri, Nazem نويسنده Faculty of Mathematical Sciences, Tehran, Iran
كليدواژه :
Trust-region algorithms , Unconstrained optimization , Filter methods
عنوان كنفرانس :
چهارمين كنفرانس بين المللي انجمن ايران تحقيق در عمليات
چكيده فارسي :
We introduce a new filter acceptance criterion for unconstrained optimization.
Using this criterion, we present a new filter trust-region algorithm for solving unconstrained
nonlinear optimization problems. The new criterion has the property that guarantees the
finiteness of the filter size. We also show a correlation between problem dimension and filter
size. We then show that at least one of the limit points of the sequence of the iterates is firstorder
critical, and strengthen the result by showing the first order criticality of all the limit
points of the sequence of the iterates for a modified version of the algorithm. Finally, we
compare our algorithm with some other existing filter trust-region algorithms on the
collection of CUTEr unconstrained test problems.
شماره مدرك كنفرانس :
1891451