شماره ركورد كنفرانس :
1730
عنوان مقاله :
Programmable Fuzzifier Circuits with High Precision for Analog Neuro-Fuzzy System
عنوان به زبان ديگر :
Programmable Fuzzifier Circuits with High Precision for Analog Neuro-Fuzzy System
پديدآورندگان :
Ghasemizadeh Habib نويسنده , Fathi Amir نويسنده , Ahmadi Aghil نويسنده
كليدواژه :
Gaussian function , mixed signal , Fuzzifier , MFG , Fuzzy Controller
عنوان كنفرانس :
بيستمين كنفرانس مهندسي برق ايران
چكيده لاتين :
In this paper, we propose a Membership function Generator (MFG) circuit in the form of Gaussian and trapezoidal for Neuro-fuzzy applications which is programmedby four voltage signals. Two signals define the knees where output signals begin falling or rising, while other ones change the rising or falling slopes of Gaussian and trapezoidalfunctions, independently. So there is no need to change the sizes of transistors or to switch parallel transistors. This is alsocaused the circuit flexibility increases and the chip area decreases. Using two stages, the accuracy of the circuit togenerate Gaussian function is improved. Since three generated functions (small, medium, and large) are produced by a circuit simultaneously, low power consumption with small occupiedarea is obtained. Finally, simulation results which were done by HSPICE (level49) in 0.35μm CMOS process are presented.The Layout of the circuit realized less than 1300μm
شماره مدرك كنفرانس :
4460809