شماره ركورد كنفرانس :
144
عنوان مقاله :
Evolutionary Decision Tree Induction with Multi- Interval Discretization
پديدآورندگان :
Saremi Mehrin نويسنده , Yaghmaee Farzin نويسنده Electrical and Computer Engineering Department, Semnan University, Semnan, Iran
تعداد صفحه :
6
كليدواژه :
Decision tree induction , Evolutionary algorithm , multi-interval discretization , Genetic programming
عنوان كنفرانس :
مجموعه مقالات دوازدهمين كنفرانس سيستم هاي هوشمند ايران
زبان مدرك :
فارسی
چكيده فارسي :
Decision trees are one of the widely used machine learning tools with their most important advantage being their comprehensible structure. Many classic algorithms (usually greedy top-down ones) have been developed for constructing decision trees, while in recent years evolutionary algorithms have found their application in this area. Discretization is a technique which enables algorithms like decision trees to deal with continuous attributes as well as discrete attributes. We present an algorithm that combines the process of multi-interval discretization with tree induction, and introduce especially designed genetic programming operators for this task. We compared our algorithm with a classic one, namely C4.5. The comparison results suggest that our method is capable of producing smaller trees.
شماره مدرك كنفرانس :
3817034
سال انتشار :
2014
از صفحه :
1
تا صفحه :
6
سال انتشار :
0
لينک به اين مدرک :
بازگشت