شماره ركورد كنفرانس :
144
عنوان مقاله :
Recognition of Legal Amount Words on Persian Bank Checks Using Hidden Markov Model
پديدآورندگان :
Shahriarpour Elham نويسنده , Sadri Javad نويسنده
تعداد صفحه :
5
كليدواژه :
Hidden Markov Models , Persian bank checks , handwritten words recognition , legal amount words
عنوان كنفرانس :
مجموعه مقالات دوازدهمين كنفرانس سيستم هاي هوشمند ايران
زبان مدرك :
فارسی
چكيده فارسي :
So far, various works in the field of Persian handwritten words recognition have been conducted, but very little work has been done about recognition of legal amount words on Persian bank checks. Nowadays, researchers use different methods for recognition of handwritten words that among them Hidden Markov Model (HMM) has attracted a lot of attention. In this paper, due to high efficiency of HMM on Latin words recognition, it is utilized for legal amount words recognition of Persian bank checks. In our method, for feature extraction a sliding window used to scan the images of the words from right to left. In each window, the four statistical features are extracted to represent parts of handwritten words. Then, right– left discrete Hidden Markov Model and Fuzzy vector quantization are used for classification of the words based on these features. Our experimental results on the valid databases show the efficiency of HMM for the recognition of legal amount words of the Persian bank checks
شماره مدرك كنفرانس :
3817034
سال انتشار :
2014
از صفحه :
1
تا صفحه :
5
سال انتشار :
0
لينک به اين مدرک :
بازگشت