شماره ركورد كنفرانس :
1730
عنوان مقاله :
Confidence Measure Improvement Using Useful Predictor Features and Support Vector Machines
عنوان به زبان ديگر :
Confidence Measure Improvement Using Useful Predictor Features and Support Vector Machines
پديدآورندگان :
Shekofteh Yasser نويسنده , Kabudian Jahanshah نويسنده , Goodarzi Mohammad Mohsen نويسنده , Sarraf Rezaei Iman نويسنده
تعداد صفحه :
4
كليدواژه :
Keyword spotting , speech recognition , SVM , Confidence measure , predictor feature
سال انتشار :
2012
عنوان كنفرانس :
بيستمين كنفرانس مهندسي برق ايران
زبان مدرك :
فارسی
چكيده لاتين :
In traditional keyword spotting (KWS) systems,confidence measure (CM) of each keyword is computed from normalized acoustic likelihoods. In addition to likelihood basedscores, some keyword dependent features named predictor features such as duration and prosodic features could be definedto improve the performance of CM. In this paper a discriminative and probabilistic computation of CM based upon some useful predictor features and support vector machines(SVM) is presented for Persian conversational telephone speech KWS. Our experimental results show that higher performancewill be achieved by appending utilized predictor features. The proposed CM with linear kernel function of SVM is obtained an improvement about 8.6% in Figure-of-Merit (FOM) of KWS system
شماره مدرك كنفرانس :
4460809
سال انتشار :
2012
از صفحه :
1
تا صفحه :
4
سال انتشار :
2012
لينک به اين مدرک :
بازگشت