شماره ركورد كنفرانس :
1730
عنوان مقاله :
Speech Enhancement Using Kernel Recursive Least-Squares Method
عنوان به زبان ديگر :
Speech Enhancement Using Kernel Recursive Least-Squares Method
پديدآورندگان :
Ghalami Osgouei Sina نويسنده , Geravanchizadeh Masoud نويسنده , Abadianfard Alireza نويسنده
تعداد صفحه :
6
كليدواژه :
KernelMethods , Kernel Adaptive Filtering , speech enhancement , reproducing kernel Hilbert spaces , Linear Adaptive Filtering
سال انتشار :
2012
عنوان كنفرانس :
بيستمين كنفرانس مهندسي برق ايران
زبان مدرك :
فارسی
چكيده لاتين :
In this paper, we propose a new speech enhancement structure based on kernel recursive least squares adaptive filtering. The combination of the famed kernel trick andrecursive least squares (RLS) algorithm yields powerful nonlinear extensions, named collectively here as KRLS. This method improves the adaptive filtering performance innonlinear adaptive filtering scenarios. We compare the performance of this kernel based algorithm in the area of dualchannelspeech enhancement with other linear adaptive filtering techniques. Experimental results show that the proposed enhancement structure has better performance in a sense of mean-squares error (MSE) and speech quality improvement than the those based on standard LMS, Normalized LMS, Affine projection, and conventional RLS algorithms
شماره مدرك كنفرانس :
4460809
سال انتشار :
2012
از صفحه :
1
تا صفحه :
6
سال انتشار :
2012
لينک به اين مدرک :
بازگشت