شماره ركورد كنفرانس :
3140
عنوان مقاله :
Functional Principal Component Analysis : A Generalization of Multivariate Principal Component Analysis
عنوان به زبان ديگر :
Functional Principal Component Analysis : A Generalization of Multivariate Principal Component Analysis
پديدآورندگان :
R. Nasirzadeh R نويسنده Department of Statistics - Shiraz University - Shiraz - Iran , Nematollahi A.R نويسنده Department of Statistics - Shiraz University - Shiraz - Iran , Soltani A.R نويسنده Department of Statistics and Operations Research - Faculty of Science - Kuwait University - Kuwait
تعداد صفحه :
12
كليدواژه :
PCA , SPE , FPCA , Hilbert Spac nemt Analys vectors
سال انتشار :
1391
عنوان كنفرانس :
يازدهمين كنفرانس آمار ايران
زبان مدرك :
فارسی
چكيده لاتين :
A principal component analysis (PCA) is trying to find a sequence of orthogonal components through a few linear combinations of original variables. The main goal of PCA is data reduction. The term “functional data refers to data, where each observation is a curve. a surface, or a hypersurface. as opposed to a point or a finite-dimensional vector. Functional data are intrinsically infinite dimensional and measurements on the same curve display high correlation, making assumptions of classical multivariate models invalid. In functional principal components (FPCA) we are trying to summarize the infinite dimensional random trajectories through a finite number of functional principal component scores. In this paper, we decide to explain some of the proprieties of PCA and FPCA. The Hilbert space and the proprieties of eigenvalues and eigenvectors (EEP) will be stated, too. Finally, we work on a real data, as an example of FPCA. , Functional Data. Functional Principal Compofultivariate Principal Component Analysis. Eigenvalues. Eigenrum of a Bounded Linear Operator
شماره مدرك كنفرانس :
4219389
سال انتشار :
1391
از صفحه :
1
تا صفحه :
12
سال انتشار :
1391
لينک به اين مدرک :
بازگشت