شماره ركورد كنفرانس :
144
عنوان مقاله :
A SIFT Based Object Recognition using contextual information
پديدآورندگان :
Zohrevand Abbas نويسنده , AhmadyFard Alireza نويسنده , Puyan Aliakbar نويسنده , Imani Zahra نويسنده
تعداد صفحه :
4
كليدواژه :
SIFT , attribute graph (AG) , contextual information , Object recognition , Relaxation labeling
عنوان كنفرانس :
مجموعه مقالات دوازدهمين كنفرانس سيستم هاي هوشمند ايران
زبان مدرك :
فارسی
چكيده فارسي :
while automated object recognition in natural scenes has been studied for long times, it still remains a challenging problem in machine vision, image processing and analysis. Object recognition is classifying an unknown object into one of the set of specified categories. The main problem in object recognition begins from the several factors, scaling, rotation, distortion, illumination, occlusion etc. In this paper first, we apply Scale Invariant Feature Transform (SIFT) method on image to extract primitive points and the corresponding descriptors. Then we represent the extracted descriptors in form of AG graphs. So scene image and the model of objects we have two different graphs refer to it as scene and model graph. We suggest using the relaxation labeling to match the scene and model graphs. The result of experiment shows that the use of contextual information improves the descriptor matching significantly.
شماره مدرك كنفرانس :
3817034
سال انتشار :
2014
از صفحه :
1
تا صفحه :
4
سال انتشار :
0
لينک به اين مدرک :
بازگشت