شماره ركورد كنفرانس :
144
عنوان مقاله :
A SIFT Based Object Recognition using contextual information
پديدآورندگان :
Zohrevand Abbas نويسنده , AhmadyFard Alireza نويسنده , Puyan Aliakbar نويسنده , Imani Zahra نويسنده
كليدواژه :
SIFT , attribute graph (AG) , contextual information , Object recognition , Relaxation labeling
عنوان كنفرانس :
مجموعه مقالات دوازدهمين كنفرانس سيستم هاي هوشمند ايران
چكيده فارسي :
while automated object recognition in natural
scenes has been studied for long times, it still remains a
challenging problem in machine vision, image processing and
analysis. Object recognition is classifying an unknown object into
one of the set of specified categories. The main problem in object
recognition begins from the several factors, scaling, rotation,
distortion, illumination, occlusion etc. In this paper first, we
apply Scale Invariant Feature Transform (SIFT) method on
image to extract primitive points and the corresponding
descriptors. Then we represent the extracted descriptors in form
of AG graphs. So scene image and the model of objects we have
two different graphs refer to it as scene and model graph. We
suggest using the relaxation labeling to match the scene and
model graphs. The result of experiment shows that the use of
contextual information improves the descriptor matching
significantly.
شماره مدرك كنفرانس :
3817034