شماره ركورد كنفرانس :
3140
عنوان مقاله :
A Finite Mixture Kullback - Leibler Model Selection Criterion
عنوان به زبان ديگر :
A Finite Mixture Kullback - Leibler Model Selection Criterion
پديدآورندگان :
Sayyareh Abdolreza نويسنده Department of Statisties - Razi University - Kermanshah - Iran
تعداد صفحه :
9
كليدواژه :
Kullback-Leibler risk , Model Selection Criteria , non-nested models , Vongs test
سال انتشار :
1391
عنوان كنفرانس :
يازدهمين كنفرانس آمار ايران
زبان مدرك :
فارسی
چكيده لاتين :
The purpose of statistical modeling is to construct a model that approximates the tre structure as accurately as possible through the use of available data. A good model will generally yield good results; however, one cannot expect to obtain good results when using an inappropriate model. Herein lies the importance of model evaluation criteria for assessing the goodness of a subjective model. This paper considers a finite mixture of the known Kullback-Leibler criterion to the model selection problem. The aim of this criterion is to select an admissible set of models based on a measure of closeness. We demonstrate that a very general class of statistical criterion, which we call that finite mixture Kullback-Leibler criterion, provides a way of rival theory model selection
شماره مدرك كنفرانس :
4219389
سال انتشار :
1391
از صفحه :
1
تا صفحه :
9
سال انتشار :
1391
لينک به اين مدرک :
بازگشت