شماره ركورد كنفرانس :
3297
عنوان مقاله :
A non-parametric mixture of Gaussian naive Bayes classifiers based on local independent features
پديدآورندگان :
Haghpanah jahromi Ali School of Electrical and Computer Engineering Shiraz University , Taheri Mohammad School of Electrical and Computer Engineering Shiraz University
كليدواژه :
Gaussian naive Bayes , multi-modal classification , local PCA , ensemble naive Bayes
سال انتشار :
آبان 1396
عنوان كنفرانس :
نوزدهمين سمپوزيوم بين المللي هوش مصنوعي و پردازش سيگنال
زبان مدرك :
لاتين
چكيده لاتين :
The naive Bayes is one of the useful classification techniques in data mining and machine learning. Although naive Bayes learners are efficient, they suffer from the weak assumption of conditional independence between the attributes. Many algorithms have been proposed to improve the effectiveness of naive Bayes classifier by inserting discriminant approaches into its generative structure. Combining generative and discriminative viewpoints is done in many algorithms e.g. by use of attribute weighting, instance weighting or ensemble method. In this paper, a new ensemble of Gaussian naive Bayes classifiers is proposed based on the mixture of Gaussian distributions formed on less conditional dependent features extracted by local PCA. A semi-AdaBoost approach is used for dynamic adaptation of distributions considering misclassified instances. The proposed method has been evaluated and compared with the related work on 12 UCI machine learning datasets and
كشور :
ايران
تعداد صفحه 2 :
4
از صفحه :
1
تا صفحه :
4
لينک به اين مدرک :
بازگشت