شماره ركورد كنفرانس :
3723
عنوان مقاله :
روشي بهينه براي تحليل آنتهاي گرافني به شكل دلخواه در باند فركانسي تراهرتز
عنوان به زبان ديگر :
An efficient integral equation analysis for arbitrarily shaped graphene-based terahertz antennas
پديدآورندگان :
روشنايي مجيد majid.roshanaei7293@gmail.com دانشگاه بوعلي سينا; , كرمي حميدرضا hamidr.karami@basu.ac.ir دانشگاه بوعلي سينا; , حسيني سيد منوچهر manouchehr.hosseini@gmail.com دانشگاه بوعلي سينا;
تعداد صفحه :
6
كليدواژه :
geraphene , integral equation , terahertz antenna , method of moments
سال انتشار :
1396
عنوان كنفرانس :
دومين كنفرانس بين المللي در مهندسي برق
زبان مدرك :
انگليسي
چكيده فارسي :
This letter proposes an efficient method to analyse an arbitrary shaped graphene-based terahertz antenna. In this analysis, the method of Moments is used to solve the mixed potential integral equations which are derived by enforcing the continuity of the tangential electric field at graphene layer and metallic sheet. The efficiency and accuracy of the proposed method is confirmed by the well-known HFSS solver in the frequency domain. It is shown that our proposed method is 21 times faster while it needs almost 1000 times less memory compare to HFSS solver. Thus, it is a very efficient method for analysing the arbitrary shaped terahertz antennas including graphene layers.
چكيده لاتين :
This letter proposes an efficient method to analyse an arbitrary shaped graphene-based terahertz antenna. In this analysis, the method of Moments is used to solve the mixed potential integral equations which are derived by enforcing the continuity of the tangential electric field at graphene layer and metallic sheet. The efficiency and accuracy of the proposed method is confirmed by the well-known HFSS solver in the frequency domain. It is shown that our proposed method is 21 times faster while it needs almost 1000 times less memory compare to HFSS solver. Thus, it is a very efficient method for analysing the arbitrary shaped terahertz antennas including graphene layers.
كشور :
ايران
لينک به اين مدرک :
بازگشت