شماره ركورد كنفرانس :
3735
عنوان مقاله :
(ON THE COLOCALLY SOCLE OF C(X
پديدآورندگان :
Soltanpour S s.soltanpour@put.ac.ir Petroleum University of Technology, Ahvaz
كليدواژه :
Socle , Locally socle , Compact space , Prime ideal , Scattered space
عنوان كنفرانس :
اولين كنفرانس منطقه اي علوم رياضي و كاربردها
چكيده فارسي :
(Let $C_F(X)$ be the socle of $C(X)$ (i.e., the sum of minimal ideals of $C(X)$
We introduce and study the concept of colocally socle of $C(X)$ as
$C_{\mu}{S_{\lambda}}(X)=\left\{ f\in C(X):
|X\backslash {S}^{\lambda}_{f}| \mu \right\}$, where ${{S}^{\lambda}_{f}}$ is the union of all open subsets $U$ in $X$ such that $|U\backslash Z(f)| \lambda$.
$C_{\mu}{S_{\lambda}}(X)$ is a $z$-ideal of $C(X)$ containing
${{C}_{F}}(X)$. In particular $C_{{\aleph}_0}{S_{{\aleph}_0}}(X)=CC_F(X)$ is investigated.
We characterize spaces $X$ for which the equality in the relation ${{C}_{F}}(X)\subseteq CC_F(X)\subseteq C(X)$ is hold. We determine the conditions such that $CC_F(X)$ is not prime in any subrings of $C(X)$ which contains the idempotents of $X$. The primness of $CC_F(X)$ in some subrings of $C(X)$ is investigated.