شماره ركورد كنفرانس :
3806
عنوان مقاله :
Some Bounds on the Energy of Signed Complete Bipartite Graphs
پديدآورندگان :
Akbari S s_akbari@sharif.edu Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran , Bagheri Y yousefbagherizzz@gmail.com Department of Mathematics, K.N. Toosi University of Technology, Tehran, Iran , Saadat Akhtar S simasaadatzzz3@gmail.com Department of Mathematical, Tehran-Markaz Branch, Islamic Azad University, Tehran, Iran
تعداد صفحه :
3
كليدواژه :
Signed graph , Eigenvalues , Complete Bipartite Graphs , Energy.
سال انتشار :
1396
عنوان كنفرانس :
دهمين كنفرانس ملي نظريه گراف و تركيبات جبري
زبان مدرك :
انگليسي
چكيده فارسي :
A signed graph Gσ is a pair (G,σ), where G is a graph, and σ : E(G) −→{−1,+1} is a function. Assume that m ≤ n are two positive integers. Let A =[ 0 B Bt 0 ] is the adjacency matrix of Kσm,n. In this talk we show that for every sign function σ, 2√mn ≤ E(Kσm,n) ≤ 2m√n, where E(Kσm,n) is the energy of Kσm,n. Also it is proved that the equality holds for the upper bound if there exists a Hadamard matrix of order n for which B is an m by n submatrix of H. Also if the equality holds, then every two distinct rows of B are orthogonal. We prove that for the lowerbound the equalityholds if andonly if Kσm,n isswitchingequivalentto Km,n.
كشور :
ايران
لينک به اين مدرک :
بازگشت