شماره ركورد كنفرانس :
3814
عنوان مقاله :
QSPR Based on Genetic Algorithm- Multiple Linear Regression and PLS Methods for Prediction of Physico-Chemical Properties of Sulfonamide Drugs
پديدآورندگان :
Dadfar Etratsadat Arak Branch, Islamic Azad University, , Shafiei Fatemeh f-shafiei@iau-arak.ac.ir Arak Branch, Islamic Azad University,
تعداد صفحه :
5
كليدواژه :
Multiple linear regression , Partial least squares , QSPR , sulfa drug.
سال انتشار :
1397
عنوان كنفرانس :
هشتمين كنفرانس و كارگاه ملي رياضي - شيمي
زبان مدرك :
انگليسي
چكيده فارسي :
Quantitative structure- property relationships (QSPR) modeling are important tools in drug study. In this study, the QSPR models have been developed for a set of sulfa drug compounds. The logarithm of the octanol/water partition coefficient (logP), and melting point (mp) of these compounds were studied by genetic algorithm based multiple linear regression (GA-MLR) and partial least squares (PLS) methods. Comparison of the quality of the MLR and PLS models shows that the PLS models have substantially better predictive capabilities than the MLR models (higher R2 values , lower RMSE values).
كشور :
ايران
لينک به اين مدرک :
بازگشت