شماره ركورد كنفرانس :
3814
عنوان مقاله :
On Transmission Version of Laplacian Energy of a Graph
پديدآورندگان :
Sharafdini Reza sharafdini @ pgu.ac.ir Persian Gulf University,
كليدواژه :
Transmission , Eigenvalue , Energy (of graph) , Laplacian energy , Topological index.
عنوان كنفرانس :
هشتمين كنفرانس و كارگاه ملي رياضي - شيمي
چكيده فارسي :
Let G be a graph with the vertices V(G) . The transmission of the vertex vi denoted by
TR_G(V_i) is defined as the sum of distances between vi and any other vertices in G
The Laplacian transmission matrix of G is defined as L_Tr(G).
Thenthe transmission version of Laplacian
energy of G is defined as LE_Tr(G).
In this paper, we obtain some inequalities between LE_Tr(G) and other invariant of G like ordinary energy and Wiener and variable transmission Zagreb index