شماره ركورد كنفرانس :
3860
عنوان مقاله :
A Newton method for multiobjective optimization problems with interval-valued objective functions
پديدآورندگان :
Ghaznavi M ghaznavi@shahroodut.ac.ir Shahrood University of Technology , Hoseinpoor N Shahrood University of Technology
كليدواژه :
Interval , valued multiobjective problem , Newton method , Pareto optimal solution , Generalized Hukuhara differentiability , Critical point
عنوان كنفرانس :
دومين كنفرانس ملي محاسبات نرم
چكيده فارسي :
In this study, we obtain (weak) Pareto optimal solutions of an unconstrained multiobjective optimization problem (MOP) with interval-valued objective functions by applying Newton method. We consider a suitable partial ordering for a pair of intervals for attaining Pareto solutions of the MOP problem. We employ the generalized Hukuhara differentiability of interval-valued vector functions to derive Newton method. It is assumed that the objective functions of the interval-valued MOP are twice continuously generalized Hukuhara differentiable. Therefore, utilizing critical points of the related crisp problem, some necessary and sufficient conditions for weakly Pareto optimal solutions of an interval-valued MOP are obtained.