شماره ركورد كنفرانس :
3926
عنوان مقاله :
The Applicability of MCMC inference to track Multiple targets within unthresholded Measurements
پديدآورندگان :
Danaee M. R. mrdanaee@ihu.ac.ir Assistant Professor Department of Electrical Engineering Imam Hossein Comprehensive University (IHCU) Tehran, Iran
تعداد صفحه :
5
كليدواژه :
Optimal proposal , Gibbs particle filter , raw measurements.
سال انتشار :
1395
عنوان كنفرانس :
بيست و چهارمين كنفرانس مهندسي برق ايران
زبان مدرك :
انگليسي
چكيده فارسي :
Th is paper presents a Markov Chain Monte Carlo (MCMC) method for multitarget tracking within raw measurements. We derive the optimal proposal density so that the raw and unthresholded measurements could be used to generate approximating particles appropriately. However, because the optimal proposal density has exponential complexity, we apply the Gibbs sampler, the well-known MCMC method, to sample from the optimal proposal density and relieve sampling burden. Simulation results show that our strategy for using the Gibbs sampler could reach to a good compromise between accuracy and computation expense.
كشور :
ايران
لينک به اين مدرک :
بازگشت