شماره ركورد كنفرانس :
3926
عنوان مقاله :
Modified Compressive Sensing Reconstruction Algorithm for Clipping Noise Estimation in OFDM Systems
پديدآورندگان :
Azizipour Mohammad Javad mj.azizipour@ee.kntu.ac.ir Faculty of Electrical Engineering, K. N. Toosi University of Technology Tehran, Iran , Mohamed-pour Kamal kmpour@kntu.ac.ir Faculty of Electrical Engineering, K. N. Toosi University of Technology Tehran, Iran
تعداد صفحه :
5
كليدواژه :
OFDM systems , PAPR problem , compressive sensing , Clipping noise estimation
سال انتشار :
1395
عنوان كنفرانس :
بيست و چهارمين كنفرانس مهندسي برق ايران
زبان مدرك :
انگليسي
چكيده فارسي :
A simple technique to reduce the peak-to-average power ratio (PAPR) is clipping the signal before the power amplifier. Th e noise resulted from the clipping process increases bit error rate (BER) which degrades the system performance. In this paper we have used d[n] as the distance between the clipped signal and the clipping level to modify compressive sensing (CS) algorithm to estimate the clipping noise. Th is modification is made in the sensing matrix by removing the redundant columns which is done by comparing d[n] with a parameter called opt. Th e performance of the proposed scheme depends on this parameter which is calculated by numerical experiments on different signal-to-noise ratio (SNR) values. Simulation results demonstrated that the proposed scheme leads to improved estimation for clipping noise and also complexity reduction for the reconstruction algorithm.
كشور :
ايران
لينک به اين مدرک :
بازگشت