شماره ركورد كنفرانس :
3934
عنوان مقاله :
Graph orbits and complexity of topological index
پديدآورندگان :
Alizdeh Yaser y.alizadeh@hsu.ac.ir Hakim Sabzevari University; , Estaji Ehsan ehsan.estaji@hsu.ac.ir Hakim Sabzevari University;
كليدواژه :
Orbit , Vertex transitive , Edge transitive , Complexity of topological index.
عنوان كنفرانس :
بيست و پنجمين سمينار جبر ايران
چكيده فارسي :
Let I be a summation-type topological index and let G be a graph. The I-complexity CI (G) of
G is introduced as the number of di erent contributions to I(G) in its summation formula. The
complexity is studied in the case of the connective eccentric index ce and Szeged index. It is proved
that C ce (G) Ov(G) and CS z(G) Oe(G) where Ov(G) and Oe(G) are the number of di erent vertex
orbits and edge orbits of G respectively. Graphs with C ce (G) = 1 and CS z(G) = 1 are studied.