شماره ركورد كنفرانس :
3944
عنوان مقاله :
BIFURCATION ANALYSIS OF A DDE MODEL OF THE CORAL REEF
پديدآورندگان :
FATTAHPOUR HANIYEH H.FATTAHPOUR@MATH.IUT.AC.IR ISFAHAN UNIVERSITY OF TECHNOLOGY , ZANGENEH HAMID R. Z. HAMIDZ@CC.IUT.AC.IR ISFAHAN UNIVERSITY OF TECHNOLOGY
تعداد صفحه :
17
كليدواژه :
Ordinary differential equation , Delay differential equation , Stability , Hopf bifurcation , periodic solution
سال انتشار :
1395
عنوان كنفرانس :
اولين كنفرانس ملي سيستم هاي ديناميكي و نظريه هاي هندسه
زبان مدرك :
انگليسي
چكيده فارسي :
‎In this paper‎, ‎first we discuss a local stability analysis of model was introduced by P‎. ‎J‎. ‎Mumby et‎. ‎al‎. ‎(2007)‎, ‎with $\frac{gM^{2}}{M+T}$ as the functional response term‎. ‎We conclude that the grazing intensity is the important parameter to control the existence or extinction of the coral reef‎. ‎Next‎, ‎we consider this model under the influence of the time delay as the bifurcation parameter‎. ‎We show that for small time delay‎, ‎the stability type of the equilibria will not change‎, ‎however for large enough time delay‎, ‎the interior equilibrium point become unstable in contrast to the ODE case‎. ‎Also for some critical grazing intensity and the time delay‎, ‎a Hopf bifurcation occur and a nontrivial periodic orbit will appear‎. ‎Further we discuss its corresponding stability switching directions‎.
كشور :
ايران
لينک به اين مدرک :
بازگشت