• شماره ركورد كنفرانس
    4028
  • عنوان مقاله

    A capable neural network model for fuzzy quadratic optimization problems

  • پديدآورندگان

    Mansoori Amin a-mansoori@um.ac.ir Ferdowsi University of Mashhad , Effati Sohrab Ferdowsi University of Mashhad

  • تعداد صفحه
    7
  • كليدواژه
    Fuzzy quadratic programming problem , recurrent neural network model , bi , objective problem , weighting problem , globally stable in the sense of Lyapunov.
  • سال انتشار
    1397
  • عنوان كنفرانس
    هشتمين همايش ملي سمينار آمار و احتمال فازي
  • زبان مدرك
    انگليسي
  • چكيده فارسي
    In this paper, a representation of a recurrent neural network to solve fuzzy quadratic programming problems (FQP) is given. The motivation of the paper is to design a new effective one-layer structure recurrent neural network model for solving the FQP. Here, we reformulate the FQP to a bi-objective problem. Furthermore, the bi-objective problem is reduced to a weighting problem and then the Karush-Kuhn- Tucker (KKT) optimality conditions of the problem are constructed. A novel recurrent neural network model to solve the FQP is developed. Finally, an illustrative example is presented.
  • كشور
    ايران