شماره ركورد كنفرانس :
4062
عنوان مقاله :
LINE GRAPHS CONTAINING {1, 2}-FACTORS
پديدآورندگان :
Aghabali M. mehdi.aaghabali@ed.ac.uk School of Mathematics, The University of Edinburgh , AKBARI S. s akbari@sharif.edu Sharif University of Technology , TAJFIROUZ Z z tajfirouz@yahoo.com School of Mathematics, The University of Edinburgh
كليدواژه :
Permanent , Line graphs , Sachs Subgraphs.
عنوان كنفرانس :
نهمين كنفرانس ملي نظريه گراف و تركيبيات جبري
چكيده فارسي :
Let G be a graph. A spanning subgraph H of G is called a {1, 2}-factor if
each component of H is either a copy of K 2 or a 2-regular subgraph of G. In this article
we characterize all graphs whose permanent of their adjacency matrices are 1. Then we
prove that the line graph of G, L(G), admits a {1, 2}-factor, unless G is isomorphic to a
spanning tree of a graph whose permanent of the adjacency matrix is 1 and in addition
contains a unique perfect matching.