شماره ركورد كنفرانس :
4062
عنوان مقاله :
SEPARATING SETS AND LAPLACIAN EIGENVALUES OF GRAPHS
پديدآورندگان :
AKBARI S. S[underline]akbari@sharif.edu SHARIF UNIVERSITY , GHASEMIAN E. e.ghasemian@kashanu.ac.ir University of Kashan , FATHTABAR G.H. fathtabar@kashanu.ac.ir University of Kashan
كليدواژه :
Laplacian matrix , Laplacian spread , Eigenvalues.
عنوان كنفرانس :
نهمين كنفرانس ملي نظريه گراف و تركيبيات جبري
چكيده فارسي :
Let G be a graph of order n and 0 = µ 1 (G) ≤ µ 2 (G) ≤ · · · ≤ µ n (G) be the
Laplacian eigenvalues of G. Haemers [1] proved that:
If X and Y are two disjoint sets of vertices of G such that there is no edge between X
and Y , then
| X || Y |
(n − | X | )(n − | Y | )
≤
(
LS(G)
µ n (G) + µ 2 (G)
) 2
.
In this talk we would like to generalize this result whenever the edges between X and
Y form a bipartite regular graph.