شماره ركورد كنفرانس :
4062
عنوان مقاله :
A GENERALIZATION OF ZERO-DIVISOR GRAPH
پديدآورندگان :
NIKANDISH REZA r.nikandish@jsu.ac.ir Jundi-Shapur University of Technology, Dezful, Iran
كليدواژه :
Zero , divisor graph , Essential ideal , Complete graph.
عنوان كنفرانس :
نهمين كنفرانس ملي نظريه گراف و تركيبيات جبري
چكيده فارسي :
Let R be a commutative ring with identity, Z(R) be the set of zero-divisors
of R, and let Γ(R) be the zero-divisor graph of R. In this talk, we introduce and study a
generalization of zero-divisor graphs. This new graph associated with R is defined as the
graph Γ g (R) with the vertex set Z(R)
∗
= Z(R) n f 0 g , and two distinct vertices x and y
are adjacent if and only if ann R (x) + ann R (y) is an essential ideal of R. It follows that
Γ g (R) contains Γ(R) as a subgraph. The diameter, the girth and conditions under which
Γ g (R) equals to Γ(R) are discussed.