شماره ركورد كنفرانس :
4079
عنوان مقاله :
An extension of Lepingle inequality in Von Neumann algebras with finite trace
پديدآورندگان :
Talebi A. alitalebimath@yahoo.com Ferdowsi University of Mashhad , Sal Moslehian M. moslehian@um.ac.ir Ferdowsi University of Mashhad
كليدواژه :
von Neumann algebra , non , commutative probability space , Lepingle inequality , conditional expectation
عنوان كنفرانس :
چهل و هفتمين كنفرانس رياضي ايران
چكيده فارسي :
An inequality of Asmar and Montgomery-Smith states that
\begin{eqnarray*}
\| (\sum_{n=1}^\infty |\mathbb{E}_{\mathcal{F}_{n-1}}X_n|^q)^{\frac{1}{q}} \|_p
\leq C_p \| (\sum_{n=1}^\infty |X_n|^q)^{\frac{1}{q}} \|_p \quad (1 p \infty, 1 \leq q \leq \infty),
\end{eqnarray*}
where $(X_n)_{n=1}^\infty$ is a stochastic process adapted to the filtration $(\mathcal{F}_n)_{n=0}^\infty$. Recall that
a filtration of a von Neumann algebra $\mathcal{M}$ is an increasing sequence $(\mathcal{M}_n)_{n\ge 0}$ of
von Neumann subalgebras of $\mathcal{M}$ such that $\bigcup\limits_{n\ge 0} \mathcal{M}_n$
generates $\mathcal{M}$ in the $w^*$-topology. Using the duality argument Lepingle
verified this inequality for adapted process with $q=2$. We obtain some versions of Lepingle inequality in the noncommutative setting.